Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 46(1): 95-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985545

RESUMO

BACKGROUND: In nucleotide public repositories, studies discovered data errors which resulted in incorrect species identification of several accipitrid raptors considered for conservation. Mislabeling, particularly in cases of cryptic species complexes and closely related species, which were identified based on morphological characteristics, was discovered. Prioritizing accurate species labeling, morphological taxonomy, and voucher documentation is crucial to rectify spurious data. OBJECTIVE: Our study aimed to identify an effective DNA barcoding tool that accurately reflects the efficiency status of barcodes in raptor species (Accipitridae). METHODS: Barcode sequences, including 889 sequences from the mitochondrial cytochrome c oxidase I (COI) gene and 1052 sequences from cytochrome b (Cytb), from 150 raptor species within the Accipitridae family were analyzed. RESULTS: The highest percentage of intraspecific nearest neighbors from the nearest neighbor test was 88.05% for COI and 95.00% for Cytb, suggesting that the Cytb gene is a more suitable marker for accurately identifying raptor species and can serve as a standard region for DNA barcoding. In both datasets, a positive barcoding gap representing the difference between inter-and intra-specific sequence divergences was observed. For COI and Cytb, the cut-off score sequence divergences for species identification were 4.00% and 3.00%, respectively. CONCLUSION: Greater accuracy was demonstrated for the Cytb gene, making it the preferred primary DNA barcoding marker for raptors.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Código de Barras de DNA Taxonômico/métodos , Sequência de Bases , Genes Mitocondriais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Citocromos b/genética
2.
Biology (Basel) ; 12(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998027

RESUMO

Hybrids between the critically endangered Siamese crocodile (Crocodylus siamensis) and least-concern saltwater crocodile (C. porosus) in captive populations represent a serious challenge for conservation and reintroduction programs due to the impact of anthropogenic activities. A previous study used microsatellite and mitochondrial DNA data to establish the criteria for identifying species and their hybrids; however, the results may have been influenced by biased allelic frequencies and genetic drift within the examined population. To overcome these limitations and identify the true signals of selection, alternative DNA markers and a diverse set of populations should be employed. Therefore, this study used DArT sequencing to identify genome-wide single nucleotide polymorphisms (SNPs) in both species and confirm the genetic scenario of the parental species and their hybrids. A population of saltwater crocodiles from Australia was used to compare the distribution of species-diagnostic SNPs. Different analytical approaches were compared to diagnose the level of hybridization when an admixture was present, wherein three individuals had potential backcrossing. Approximately 17.00-26.00% of loci were conserved between the Siamese and saltwater crocodile genomes. Species-diagnostic SNP loci for Siamese and saltwater crocodiles were identified as 8051 loci and 1288 loci, respectively. To validate the species-diagnostic SNP loci, a PCR-based approach was used by selecting 20 SNP loci for PCR primer design, among which 3 loci were successfully able to differentiate the actual species and different hybridization levels. Mitochondrial and nuclear genetic information, including microsatellite genotyping and species-diagnostic DNA markers, were combined as a novel method that can compensate for the limitations of each method. This method enables conservation prioritization before release into the wild, thereby ensuring sustainable genetic integrity for long-term species survival through reintroduction and management programs.

3.
PeerJ ; 11: e16284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901454

RESUMO

Background: The genus Aneura Dumort. is a simple thalloid liverwort with cosmopolitan distributions. Species circumscription is problematic in this genus due to a limited number of morphological traits. Two species are currently reported from Thailand, including A. maxima and A. pinguis. At the global scale, A. pinguis is considered a cryptic species, as the species contains several distinct genetic groups without clear morphological differentiation. At the same time, the identity of A. maxima remains unclear. In this work, we examined the level of diversity of Aneura species found in Thailand using both morphological and molecular data. Methods: We measured the morphological traits and generated the molecular data (four markers: trnL-F, trnH-psbA, rbcL, and ITS2) from the Thai specimens. The concatenated dataset was then used to reconstruct phylogeny. Species delimitation with GMYC, bPTP, ASAP, and ABGD methods was performed to estimate the number of putative species within the genus. Results: The samples of A. pinguis formed several clades, while A. maxima sequences from Poland were grouped in their clade and nested within another A. pinguis clade. We could not recover a sample of A. maxima from Thailand, even from the reported locality. Two putative species were detected among Thai Aneura samples. However, no morphological trait could distinguish the specimens from the two observed genetic groups. Discussion: The previously observed paraphyletic nature of A. pinguis globally was also found among Thai samples, including several putative species. However, we could not confirm the identity of A. maxima from Thai specimens. The previous report could result from misidentification and problematic species circumscription within Aneura. The results highlighted the need to include multiple lines of evidence for the future taxonomic investigation of the group.


Assuntos
Hepatófitas , Hepatófitas/genética , Tailândia , Filogenia , Polônia
4.
Biology (Basel) ; 12(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886990

RESUMO

Microsatellites are polymorphic and cost-effective. Optimizing reduced microsatellite panels using heuristic algorithms eases budget constraints in genetic diversity and population genetic assessments. Microsatellite marker efficiency is strongly associated with its polymorphism and is quantified as the polymorphic information content (PIC). Nevertheless, marker selection cannot rely solely on PIC. In this study, the ant colony optimization (ACO) algorithm, a widely recognized optimization method, was adopted to create an enhanced selection scheme for refining microsatellite marker panels, called the PIC-ACO selection scheme. The algorithm was fine-tuned and validated using extensive datasets of chicken (Gallus gallus) and Chinese gorals (Naemorhedus griseus) from our previous studies. In contrast to basic optimization algorithms that stochastically initialize potential outputs, our selection algorithm utilizes the PIC values of markers to prime the ACO process. This increases the global solution discovery speed while reducing the likelihood of becoming trapped in local solutions. This process facilitated the acquisition of a cost-efficient and optimized microsatellite marker panel for studying genetic diversity and population genetic datasets. The established microsatellite efficiency metrics such as PIC, allele richness, and heterozygosity were correlated with the actual effectiveness of the microsatellite marker panel. This approach could substantially reduce budgetary barriers to population genetic assessments, breeding, and conservation programs.

5.
Genomics Inform ; 21(3): e39, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37813635

RESUMO

DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.

6.
Chromosome Res ; 31(4): 29, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775555

RESUMO

Microsatellites are short tandem DNA repeats, ubiquitous in genomes. They are believed to be under selection pressure, considering their high distribution and abundance beyond chance or random accumulation. However, limited analysis of microsatellites in single taxonomic groups makes it challenging to understand their evolutionary significance across taxonomic boundaries. Despite abundant genomic information, microsatellites have been studied in limited contexts and within a few species, warranting an unbiased examination of their genome-wide distribution in distinct versus closely related-clades. Large-scale comparisons have revealed relevant trends, especially in vertebrates. Here, "MicrosatNavigator", a new tool that allows quick and reliable investigation of perfect microsatellites in DNA sequences, was developed. This tool can identify microsatellites across the entire genome sequences. Using this tool, microsatellite repeat motifs were identified in the genome sequences of 186 vertebrates. A significant positive correlation was noted between the abundance, density, length, and GC bias of microsatellites and specific lineages. The (AC)n motif is the most prevalent in vertebrate genomes, showing distinct patterns in closely related species. Longer microsatellites were observed on sex chromosomes in birds and mammals but not on autosomes. Microsatellites on sex chromosomes of non-fish vertebrates have the lowest GC content, whereas high-GC microsatellites (≥ 50 M% GC) are preferred in bony and cartilaginous fishes. Thus, similar selective forces and mutational processes may constrain GC-rich microsatellites to different clades. These findings should facilitate investigations into the roles of microsatellites in sex chromosome differentiation and provide candidate microsatellites for functional analysis across the vertebrate evolutionary spectrum.


Assuntos
Genoma , Vertebrados , Animais , Vertebrados/genética , Repetições de Microssatélites , Cromossomos Sexuais/genética , Genômica , Mamíferos/genética
7.
PhytoKeys ; 222: 27-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252643

RESUMO

Leucobryumscalare was described in 1904 but its taxonomic status has been disputed, being reduced to a variety of Leucobryumaduncum or synonymized with Leucobryumaduncum. The taxonomic confusion of this taxon has remained unresolved. Hence, we revisited the taxonomic status of the taxon using phylogenetic and morphometric approaches. A total of 27 samples from Leucobryumaduncumvar.aduncum and Leucobryumaduncumvar.scalare were used to generate data from four markers, including ITS1, ITS2, atpB-rbcL spacer, and trnL-trnF. The concatenated dataset was used to reconstruct a phylogenetic tree. Both qualitative and quantitative morphological characters were measured and analyzed with Principal Component Analysis (PCA) and PERMANOVA. The results showed that the two taxa are closely related but they are reciprocally monophyletic. Both qualitative and quantitative characters could also separate Leucobryumaduncumvar.scalare from Leucobryumaduncumvar.aduncum as shown with PCA and PERMANOVA. We propose the resurrection of the species rank for Leucobryumscalare as separate from Leucobryumaduncum. This work highlights the need for a more thorough revision of Leucobryum to clarify the actual level of diversity in this genus.

8.
Genes Genomics ; 45(2): 169-181, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36512198

RESUMO

BACKGROUND: The number of nucleotide sequences in public repositories has exploded recently. However, the data contain errors, leading to incorrect species identification. Several fighting fish (Betta spp.) are poorly described, with unresolved cryptic species complexes masking undescribed species. Here, DNA barcoding was used to detect erroneous sequences in public repositories. OBJECTIVE: This study reflects the current quantitative and qualitative status of DNA barcoding in fighting fish and provides a rapid and reliable identification tool. METHODS: A total of 1034 barcode sequences were analyzed from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes from 71 fighting fish species. RESULTS: The nearest neighbor test showed the highest percentage of intraspecific nearest neighbors at 93.41% for COI and 91.67% for Cytb, which can be used as reference barcodes for certain taxa. Intraspecific variation was usually less than 13%, while most species differed by more than 54%. The barcoding gap, calculated from the difference between inter- and intraspecific sequence divergences, was negative in the COI data set indicating overlapping intra- and interspecific sequence divergence. Sequence saturation was observed in the Cytb data set but not in the COI data set. CONCLUSION: The COI gene should thus be used as the main barcoding marker for fighting fish.


Assuntos
Código de Barras de DNA Taxonômico , DNA , Animais , Sequência de Bases , Controle de Qualidade , Mitocôndrias/genética , Peixes/genética , Citocromos b/genética
9.
Genomics Inform ; 21(4): e47, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38224714

RESUMO

Silver barb (Barbonymus gonionotus) is among the most economically important freshwater fish species in Thailand. It ranks fourth in economic value and third in production weight for fisheries and culture in Thailand. An XX/XY sex-determination system based on gynogenesis was previously reported for this fish. In this study, the molecular basis underlying the sex-determination system was further investigated. Genome-wide single-nucleotide polymorphism data were generated for 32 captive-bred silver barb individuals, previously scored by phenotypic sex, to identify sex-linked regions associated with sex determination. Sixty-three male-linked loci, indicating putative XY chromosomes, were identified. Male-specific loci were not observed, which indicates that the putative Y chromosome is young and the sex determination region is cryptic. A homology search revealed that most male-linked loci were homologous to the Mariner/Tc1 and Gypsy transposable elements and are probably the remnants of an initial accumulation of repeats on the Y chromosome from the early stages of sex chromosome differentiation. This research provides convincing insights into the mechanism of sex determination and reveals the potential sex determination regions in silver barb. The study provides the basic data necessary for increasing the commercial value of silver barbs through genetic improvements.

10.
Cells ; 11(12)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741082

RESUMO

Centromeric satellite DNA (cen-satDNA) consists of highly divergent repeat monomers, each approximately 171 base pairs in length. Here, we investigated the genetic diversity in the centromeric region of two primate species: long-tailed (Macaca fascicularis) and rhesus (Macaca mulatta) macaques. Fluorescence in situ hybridization and bioinformatic analysis showed the chromosome-specific organization and dynamic nature of cen-satDNAsequences, and their substantial diversity, with distinct subfamilies across macaque populations, suggesting increased turnovers. Comparative genomics identified high level polymorphisms spanning a 120 bp deletion region and a remarkable interspecific variability in cen-satDNA size and structure. Population structure analysis detected admixture patterns within populations, indicating their high divergence and rapid evolution. However, differences in cen-satDNA profiles appear to not be involved in hybrid incompatibility between the two species. Our study provides a genomic landscape of centromeric repeats in wild macaques and opens new avenues for exploring their impact on the adaptive evolution and speciation of primates.


Assuntos
DNA Satélite , Genômica , Animais , DNA Satélite/genética , Hibridização in Situ Fluorescente , Macaca fascicularis/genética , Macaca mulatta/genética
11.
Cells ; 11(11)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35681459

RESUMO

Fishes provide a unique and intriguing model system for studying the genomic origin and evolutionary mechanisms underlying sex determination and high sex-chromosome turnover. In this study, the mode of sex determination was investigated in Siamese fighting fish, a species of commercial importance. Genome-wide SNP analyses were performed on 75 individuals (40 males and 35 females) across commercial populations to determine candidate sex-specific/sex-linked loci. In total, 73 male-specific loci were identified and mapped to a 5.6 kb region on chromosome 9, suggesting a putative male-determining region (pMDR) containing localized dmrt1 and znrf3 functional sex developmental genes. Repeat annotations of the pMDR revealed an abundance of transposable elements, particularly Ty3/Gypsy and novel repeats. Remarkably, two out of the 73 male-specific loci were located on chromosomes 7 and 19, implying the existence of polygenic sex determination. Besides male-specific loci, five female-specific loci on chromosome 9 were also observed in certain populations, indicating the possibility of a female-determining region and the polygenic nature of sex determination. An alternative explanation is that male-specific loci derived from other chromosomes or female-specific loci in Siamese fighting fish recently emerged as new sex-determining loci during domestication and repeated hybridization.


Assuntos
Peixes , Análise para Determinação do Sexo , Animais , Feminino , Peixes/genética , Genoma/genética , Genômica , Masculino , Cromossomos Sexuais/genética
12.
PeerJ ; 10: e13270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573170

RESUMO

Background: Disturbances are crucial in determining forest biodiversity, dynamics, and ecosystem functions. Surface fire is a significant disturbance in tropical forests, but research on the effect of surface fire on structuring species and functional composition in a community through time remains scarce. Using a 20-year dataset of tree demography in a seasonal evergreen tropical forest in Thailand, we specifically addressed two essential questions: (1) What is the pattern of temporal turnover in species and functional composition in a community with frequent fire disturbance? (2) How did the temporal turnover vary with tree size? Methods: We analyzed species compositional and functional temporal turnovers in four different tree size classes among five tree censuses. We quantified species turnover by calculating Bray-Curtis dissimilarity, and investigated its underlying mechanisms by comparing pairwise dissimilarity of functional traits with simulations from null models. If fire disturbances contribute more to a stochastic process, the functional composition would display a random pattern. However, if they contribute more towards a deterministic process, the functional composition should reveal a non-random pattern. Results: Over 20 years (1994-2014), we observed changes in species composition, whereas functional composition remained relatively stable. The temporal turnover patterns of species and functional compositions varied with tree sizes. In particular, temporal functional turnover shifted very little for large trees, suggesting that changes in species composition of larger trees are contributed by species with similar functional traits through time. The temporal functional composition turnovers of smaller trees (DBH ≤ 5 cm) were mostly at random. We detected a higher functional turnover than expected by null models in some quadrats throughout the 50-ha study plot, and their observed turnover varied with diameter classes. Conclusions: Species compositional changes were caused by changes in the abundance of species with similar functional traits through time. Temporal functional turnover in small trees was random in most quadrats, suggesting that the recruits came from the equal proportions of surviving trees and new individuals of fast-growing species, which increased rapidly after fires. On the other hand, functional composition in big trees was more likely determined by surviving trees which maintained higher functional similarities than small trees through time. Fire disturbance is important for ecosystem functions, as changing forest fire frequency may alter forest turnover, particularly in functional composition in the new recruits of this forest.


Assuntos
Incêndios , Árvores , Humanos , Ecossistema , Florestas , Biodiversidade
13.
Front Genet ; 13: 789573, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186027

RESUMO

The African catfish (Clarias gariepinus) may exhibit the co-existence of XX/XY and ZZ/ZW sex-determination systems (SDSs). However, the SDS of African catfish might be influenced by a polygenic sex-determination (PSD) system, comprising multiple independently segregating sex "switch" loci to determine sex within a species. Here, we aimed to detect the existence of PSD using hybrid. The hybrid produced by crossing male African catfish with female bighead catfish (C. macrocephalus, XX/XY) is a good animal model to study SDSs. Determining the SDS of hybrid catfish can help in understanding the interactions between these two complex SDS systems. Using the genotyping-by-sequencing "DART-seq" approach, we detected seven moderately male-linked loci and seventeen female-linked loci across all the examined hybrid specimens. Most of these loci were not sex-linked in the parental species, suggesting that the hybrid exhibits a combination of different alleles. Annotation of the identified sex-linked loci revealed the presence of one female-linked locus homologous with the B4GALNT1 gene, which is involved in the spermatogenesis pathway and hatchability. However, this locus was not sex-linked in the parental species, and the African catfish might also exhibit PSD.

14.
Animals (Basel) ; 12(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049770

RESUMO

Duplicate control regions (CRs) have been observed in the mitochondrial genomes (mitogenomes) of most varanids. Duplicate CRs have evolved in either concerted or independent evolution in vertebrates, but whether an evolutionary pattern exists in varanids remains unknown. Therefore, we conducted this study to analyze the evolutionary patterns and phylogenetic utilities of duplicate CRs in 72 individuals of Varanus salvator macromaculatus and other varanids. Sequence analyses and phylogenetic relationships revealed that divergence between orthologous copies from different individuals was lower than in paralogous copies from the same individual, suggesting an independent evolution of the two CRs. Distinct trees and recombination testing derived from CR1 and CR2 suggested that recombination events occurred between CRs during the evolutionary process. A comparison of substitution saturation showed the potential of CR2 as a phylogenetic marker. By contrast, duplicate CRs of the four examined varanids had similar sequences within species, suggesting typical characteristics of concerted evolution. The results provide a better understanding of the molecular evolutionary processes related to the mitogenomes of the varanid lineage.

15.
PeerJ ; 9: e10962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665038

RESUMO

Sonneratia caseolaris is a pioneer species in mangrove. It can naturally grow in both saltwater and freshwater. The study was aimed at investigating and comparing the anatomical character of the S. caseolaris plants growing in different conditions and how they coped with salinity. The anatomical characteristics of roots, stems, petioles and leaf blade were investigated. The plant samples were prepared into permanent slides using a paraffin method, while the wood samples were made into permanent slides using a sliding microtome technique. Tissue clearing of leaf blade and scanning electron microscopic analysis of wood were performed. In addition, sodium chloride content in various organs and tissues was examined. It was found that cable root, stem and leaf blade showed some different anatomical characteristics between the two conditions. Periderm is a prominent tissue in saltwater roots. Tanniferous cells were observed in pneumatophores, petioles, stems and leaf blades of saltwater plants, but not found in pneumatophores and lamina of freshwater plants. Mesophyll thickness was lower in the saltwater condition. The vessel density was significantly higher in the saltwater condition than in the freshwater condition, whereas the vessel diameters in the freshwater condition were significantly higher than those in the saltwater condition. From the results, it can be concluded that root periderm plays an important role in salt exclusion, and the occurrence of tanniferous cells is associated with salt elimination.

16.
Genomics ; 113(1 Pt 2): 624-636, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33002626

RESUMO

Elucidation of the process of sex chromosome differentiation is necessary to understand the dynamics of evolutionary mechanisms in organisms. The W sex chromosome of the Siamese cobra (Naja kaouthia) contains a large number of repeats and shares amniote sex chromosomal linkages. Diversity Arrays Technology provides an effective approach to identify sex-specific loci that are epoch-making, to understand the dynamics of molecular transitions between the Z and W sex chromosomes in a snake lineage. From a total of 543 sex-specific loci, 90 showed partial homology with sex chromosomes of several amniotes and 89 loci were homologous to transposable elements. Two loci were confirmed as W-specific nucleotides after PCR amplification. These loci might result from a sex chromosome differentiation process and involve putative sex-determination regions in the Siamese cobra. Sex-specific loci shared linkage homologies among amniote sex chromosomes, supporting an ancestral super-sex chromosome.


Assuntos
Evolução Molecular , Naja naja/genética , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais/genética , Animais , Naja naja/classificação , Filogenia
17.
Front Genet ; 11: 556267, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193634

RESUMO

The majority of lizards classified in the superfamily Iguanoidea have an XX/XY sex-determination system in which sex-chromosomal linkage shows homology with chicken (Gallus gallus) chromosome 15 (GGA15). However, the genomics of sex chromosomes remain largely unexplored owing to the presence of homomorphic sex chromosomes in majority of the species. Recent advances in high-throughput genome complexity reduction sequencing provide an effective approach to the identification of sex-specific loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA), and a better understanding of sex chromosome dynamics in Iguanoidea. In this study, we applied Diversity Arrays Technology (DArTseqTM) in 29 phenotypic sex assignments (14 males and 15 females) of green iguana (Iguana iguana). We confirmed a male heterogametic (XX/XY) sex determination mode in this species, identifying 29 perfectly sex-linked SNP/PA loci and 164 moderately sex-linked SNP/PA loci, providing evidence probably indicative of XY recombination. Three loci from among the perfectly sex-linked SNP/PA loci showed partial homology with several amniote sex chromosomal linkages. The results support the hypothesis of an ancestral super-sex chromosome with overlaps of partial sex-chromosomal linkages. However, only one locus among the moderately sex-linked loci showed homology with GGA15, which suggests that the specific region homologous to GGA15 was located outside the non-recombination region but in close proximity to this region of the sex chromosome in green iguana. Therefore, the location of GGA15 might be further from the putative sex-determination locus in green iguana. This is a paradigm shift in understanding linkages on homomorphic X and Y sex chromosomes. The DArTseq platform provides an easy-to-use strategy for future research on the evolution of sex chromosomes in Iguanoidea, particularly for non-model species with homomorphic or highly cryptic sex chromosomes.

18.
Genes (Basel) ; 11(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105659

RESUMO

Transposable elements (TEs) are dynamic elements present in all eukaryotic genomes. They can "jump" and amplify within the genome and promote segmental genome rearrangements on both autosomes and sex chromosomes by disruption of gene structures. The Bovine-B long interspersed nuclear element (Bov-B LINE) is among the most abundant TE-retrotransposon families in vertebrates due to horizontal transfer (HT) among vertebrate lineages. Recent studies have shown multiple HTs or the presence of diverse Bov-B LINE groups in the snake lineage. It is hypothesized that Bov-B LINEs are highly dynamic and that the diversity reflects multiple HTs in snake lineages. Partial sequences of Bov-B LINE from 23 snake species were characterized. Phylogenetic analysis resolved at least two Bov-B LINE groups that might correspond to henophidian and caenophidian snakes; however, the tree topology differed from that based on functional nuclear and mitochondrial gene sequences. Several Bov-B LINEs of snakes showed greater than 80% similarity to sequences obtained from insects, whereas the two Bov-B LINE groups as well as sequences from the same snake species classified in different Bov-B LINE groups showed sequence similarities of less than 80%. Calculation of estimated divergence time and pairwise divergence between all individual Bov-B LINE copies suggest invasion times ranging from 79.19 to 98.8 million years ago in snakes. Accumulation of elements in a lineage-specific fashion ranged from 9 × 10-6% to 5.63 × 10-2% per genome. The genomic proportion of Bov-B LINEs varied among snake species but was not directly associated with genome size or invasion time. No differentiation in Bov-B LINE copy number between males and females was observed in any of the snake species examined. Incongruence in tree topology between Bov-B LINEs and other snake phylogenies may reflect past HT events. Sequence divergence of Bov-B LINEs between copies suggests that recent multiple HTs occurred within the same evolutionary timeframe in the snake lineage. The proportion of Bov-B LINEs varies among species, reflecting species specificity in TE invasion. The rapid speciation of snakes, coinciding with Bov-B LINE invasion in snake genomes, leads us to better understand the effect of Bov-B LINEs on snake genome evolution.


Assuntos
Variações do Número de Cópias de DNA/genética , Transferência Genética Horizontal/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Serpentes/genética , Animais , Sequência de Bases , DNA/genética , Evolução Molecular , Feminino , Variação Genética/genética , Genoma/genética , Masculino , Taxa de Mutação , Alinhamento de Sequência , Tailândia
19.
Genomics ; 112(5): 3097-3107, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32470643

RESUMO

Centromeric satellite DNA (cen-satDNA) sequences of the Asian swamp eel (Monopterus albus) were characterized. Three GC-rich cen-satDNA sequences were detected as a 233 bp MALREP-A and a 293 bp MALREP-B localized to all chromosomes, and a 293 bp MALREP-C distributed on eight chromosome pairs. Sequence lengths of MALREP-B and MALREP-C were 60 bp larger than that of MALREP-A, showing partial homology with core sequences (233 bp). Size differences between MALREP-A and MALREP-B/C suggest the possible occurrence of two satDNA families. The presence of an additional 60 bp in MALREP-B/C resulted from an ancient dimer of 233 bp monomers and subsequent mutation and homogenization between the two monomers. All MALREPs showed partial homology with transposable elements (TEs), suggesting that the MALREPs originated from the TEs. The MALREPs might have been acquired in the Asian swamp eel, thereby promoting fixation in the species.


Assuntos
Centrômero/química , DNA Satélite/química , Sequências Repetitivas Dispersas , Smegmamorpha/genética , Animais , Mapeamento Cromossômico , Sequência Consenso , Genômica , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Vertebrados/genética
20.
Front Genet ; 11: 562856, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584785

RESUMO

An investigation of sex-specific loci may provide important insights into fish sex determination strategies. This may be useful for biotechnological purposes, for example, to produce all-male or all-female fish for commercial breeding. The North African catfish species, Clarias gariepinus, has been widely adopted for aquaculture because its superior growth and disease resistance render the species suitable for hybridization with other catfish to improve the productivity and quality of fish meat. This species has either a ZZ/ZW or XX/XY sex determination system. Here, we investigate and characterize these systems using high-throughput genome complexity reduction sequencing as Diversity Arrays Technology. This approach was effective in identifying moderately sex-linked loci with both single-nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA) markers in 30 perfectly sexed individuals of C. gariepinus. However, SNPs based markers were not found in this study. In total, 41 loci met the criteria for being moderately male-linked (with male vs. female ratios 80:20 and 70:30), while 25 loci were found to be moderately linked to female sex. No strictly male- or female-linked loci were detected. Seven moderately male-linked loci were partially homologous to some classes of transposable elements and three moderately male-linked loci were partially homologous to functional genes. Our data showed that the male heterogametic XX/XY sex determination system should co-exist with the ZZ/ZW system in C. gariepinus. Our finding of the co-existence of XX/XY and ZZ/ZW systems can be applied to benefit commercial breeding of this species in Thailand. This approach using moderately sex-linked loci provides a solid baseline for revealing sex determination mechanisms and identify potential sex determination regions in catfish, allowing further investigation of genetic improvements in breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...